莆仙生活网
当前位置: 莆仙生活网 > 知识库 >

正交向量

时间:2024-02-19 03:53:30 编辑:莆仙君

两个向量正交怎么判断?

正交的两个向量的乘积为0,所以要判断向量是否正交,就看两向量的积是否为 0。做内积就是说,对应的分量相乘,再加起来。如果等于0就是正交的第一个就是2*-2 + 1*1 +0*0 =-3 所以不正交第二个1*0+1*0 +0*1 =0 正交扩展资料:向量知识点:箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。向量的记法:印刷体记作粗体的字母(如a、b、u、v)。或者(即从起点A出发指向终点B的向量)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中用(2,3)表示向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

如何证明两个向量正交?怎么证明的?

[α1,β2]=a1b1+a2b2+a3b3+a4b4,也就是两个向量的内积(点乘),代入相应的向量即可求出,例如求β2的时候,把β1和α2代入上式,运算即可算出。施密特正交化是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2等等,αm出发,求得正交向量组β1,β2,βm,使由α1,α2,αm与向量组β1,β2,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。用数学归纳法证明:上述所说明的利用线性无关向量组,构造出一个标准正交向量组的方法,就是施密特正交化方法。正交向量组是一组非零的两两正交(即内积为0)的向量构成的向量组。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。在三维向量空间中,两个向量的内积如果是零,那么就说这两个向量是正交的。正交最早出现于三维空间中的向量分析。换句话说,两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。