对数均值不等式有哪些?
对数均值不等式: [L(a,b)=a-blna-lnb(a≠b),a(a=b)]则称[ab≤L(a,b)≤a+b2]为对数平均不等式。对数平均不等式形式上具有对称性,具有数学美。对数平均不等式能有效解决含有[f(x1)-f(x2)x1-x2]型不等式问题和极值点偏移问题。对数函数基本性质:1、过定点(1,0),即x=1时,y=0。2、当 01时,在(0,+∞)上是增函数。3、对数函数是非奇非偶函数(无论增函数还是减函数都一样),它的反函数指数函数同样也是非奇非偶函数。
对数平均不等式是什么?
对数的均值不等式是:a>0,b>0,a≠b,有:√ab<(a-b)/(lna-lnb)<(a+b)/2。如果将基本不等式的2除到左边就是(a+b)/2=sqr(ab),左边的部分叫做a,b的算术平均,右边的部分叫做a,b的几何平均于是基本不等式,两个正数的几何平均不小于它们的几何平均。对数运算(1)log(a)(MN)=log(a)(M)+log(a)(N)。(2)log(a)(M/N)=log(a)(M)-log(a)(N)。(3)log(a)(M^n)=nlog(a)(M)(n∈R)。(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。