球体表面积的计算公式?
球面积公式推导如下:用^表示平方。把一个半径为r的球的上半球切成n份 每份等高。并且把每份看成一个圆柱,其中半径等于其底面圆半径。则从下到上第k个圆柱的侧面积s(k)=2πr(k)*h。其中h=r/n r(k)=根号[r^-(kh)^]s(k)=根号[r^-(kr/n)^]*2πr/n。=2πr^*根号[1/n^-(k/n^)^]则 s(1)+s(2)+……+s(n) 当 n 取极限(无穷大)的时候就是半球表面积2πr^乘以2就是整个球的表面积 4πr^球面积公式:球面积的计算公式:S=4*R^2*π,如果是半球的话只需计算球面积的一半和底部圆的面积,结果是S=1/2S。球+S底=2πR^2+πR^2=3πR^2。球的表面积公式设球的半径为$R$,球的表面积由半径$R$唯一确定,所以它的表面积$S$是以$R$为自变量的函数,即$S_球=4πR^2$。1、定义:球的表面积是指球面所围成的几何体的面积,它包括球面和球面所围成的空间。
球的表面积公式
(1)球的表面积公式是:S=4πR²公式描述:公式中R为球的半径,S为球的表面积。(2)球面的标准方程:(x-a)²+(y-b)²+(z-c)²=r²(r>0)方程描述:表示的球面的球心是(a,b,c),半径是r。(3)半径是R的球的体积计算公式是:V=(4/3)πr扩展资料:球的定义:(1)在空间中到定点的距离等于或小于定长的点的集合叫做球体,简称球。(2)以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。(3) 以圆的直径所在直线为旋转轴,圆面旋转180°形成的旋转体叫做球体,简称球。(4)在空间中到定点的距离等于定长的点的集合叫做球面即球的表面。这个定点叫球的球心,定长叫球的半径。球的性质:(1)球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。(2)在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。
球的表面积公式
球的表面积计算公式:球的表面积=4πr^2(r为球半径),球的体积计算公式:V球=(4/3)πr^3(r为球半径)。球体表面积公式S(球面)=4πr^2。运用第一数学归纳法:把一个半径为R的球的上半球横向切成n份,锋悄握每运拿份等高。并且把每份看成一个圆柱,其中半径等于其底面圆半径。则从下到上第k个圆柱的侧面积S(k)=2πr(k)×h。其中h=R/n,r(k)=√[R^2;-﹙kh^2;]=2πR^2;×√[1/n^2;-(k/n^2)^2;]。则S(1)+S(2)+……+S(n)当n取极限(无穷大)的时候,半球表面积就是2πR^2。球体乘以2就是整个球的表面积4πR^2。球体性质用一个平面去截一个球,截面是圆面。球的截面有以下性质:1、球心和截面圆心的连线垂直于截面。2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2。球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。在球面上,两点之间的最短连线的长度,就是经过这两点的银庆大圆在这两点间的一段劣弧的长度,这个弧长叫做两点的球面距离。