莆仙生活网
当前位置: 莆仙生活网 > 知识库 >

对勾函数性质

时间:2024-03-02 23:09:50 编辑:莆仙君

对勾函数的性质是什么?

对勾函数的性质如下:1、对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。2、对勾函数是奇函数。3、增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}。4、变化趋势:在y轴左边先增后减,在y轴右边先减后增。对勾函数简介:对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。若a>0,b>0,在第一象限内,其转折点为【(b/a)^(1/2),2(ab)^(1/2)】。对勾函数一阶导数:y'=-b/x^2+a。奇偶性:奇函数。

对勾函数的性质是什么?

对勾函数的性质:对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积;当定义域为时,该函数无最值;对勾函数是奇函数。对勾函数是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(ab>0)的函数。由图像得名,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。常见a=b=1。因函数图像和耐克商标相似,也被形象称为“耐克函数”或“耐克曲线”。对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。若a>0,b>0,在第一象限内,其转折点为【(b/a)^(1/2),2(ab)^(1/2)】。对勾函数一阶导数:y'=-b/x^2+a。奇偶性:奇函数。

什么是对勾函数?

对勾函数知识点总结如下:1、对号函数又称“对勾函数”、“双勾函数”、“勾函数”。表达式:y=x+p/x当函数表达式为y=qx+p/x,我们可以提取出 q,使它成为y=q(x+p/qx),这样依旧可以由性质上去观察函数。2、函数性质:(1)奇偶性当p>0时,它的图象是分布在一、三象限的两条抛物线,都不能与X轴、Y轴相交,为奇函数。当p<0时,它的图象是分布在二、四象限的两条抛物线,都不能与X轴、Y轴相交,也为奇函数。(2)单调性对于第一象限的情况:以(√p,2√p)为顶点,在(0,√p]上是减函数,在[√p,+∞)上是增函数,开口向上;   第三象限内以(-√p,-2√p)为顶点,在(-∞,-√p],是增函数,在[-√p,0)是减函数,开口向下。其中顶点的纵坐标是由对函数使用均值不等式后得到的。3、值得注意的是:在第一象限的图像,当x越小,即越接近于0时,图像左侧就越趋向Y轴+∞,但不相交;当x越大,即越趋向+∞时,图像右侧就越接近直线y=x正半支,但不相交。4、同理,在第三象限的图像,当x越大,即越接近于0时,图像右侧就越趋向Y轴-∞,但不相交;当x越小,即越趋向-∞时,图像左侧就越接近直线y=x负半支,但不相交。即渐近线有Y轴,和直线y=x。5、最值:最值的求法一是利用函数的单调性,二是均值不等式,三是特殊的单调性如求函数Y=(X+5)/√(X+4)的最值。