n维向量空间的n维是指什么意思?
很简单。只是因为我们处于三维空间,大于三维的度量不容易感知。
先从三维谈起,如向量{x1,x2,x3}在三维空间上必然可以分解为
{x1,x2,x3}=x1{1,0,0}+x2{0,1,0}+x3{0,0,1}
这三个分量{1,0,0}{0,1,0}{0,0,1}是线性无关的。而且是正交的。这样空间直角坐标系就有了基。这三个分量可以将任何三维向量线性表出。所以三维向量组成的几何空间其实可以用这三个基表达出任何三维向量。当然,向量和点对应,三维向量其实也是对应三维直角坐标系的一个点。
这样对于n维向量{x1,x2,...,xn}=x1{1,0,..,0}+...+xn{0,0,...,1}
其实在n维空间上就是由n个基构成的一个线性组合。换句话说,它也是其在n维直角坐标系中的一个点。当然,这里的直角的含义是,n个基两两正交。
按照你的要求我再说明白一点,一个n维向量其实就是一个n维欧式空间的一个点。只不过是有n个向量的。
线性代数的n维向量空间那部分有个问难问大家
n阶方阵Q可逆的充要条件有
1) |Q|≠0
2) R(Q)=n (秩)
3) Q的行向量组或列向量组线性无关
4) 齐次方程组Qx=0只有零解
5) 存在n阶方阵B, 使BQ=QB=E (单位阵)
在这里可以用2)的方法来证明,如下:
向量空间V , 维度dimS=n , V的两组基A,B
基底必然线性无关 , 即 R(A)=R(B)=n
设变换矩阵为Q , 即B=AQ , 且Q为n阶方阵 , 则R(Q)≤n
所以由B=AQ知 : R(B)≤min{R(A),R(Q)}= min{n,R(Q)}=R(Q)
即R(Q)≥R(B)=n
又R(Q)≤n
所以R(Q)=n , 即Q满秩 , 方阵Q满秩即说明|Q|≠0 , 即可逆
为什么n维线性空间中的n个线性无关的向量都可以构成它的一组基
因为Rn中的任意一向量均可由这n个线性无关的n维向量线性表出,故它是Rn的一组基.
下面证明这一事实,
设X是Rn中的任意一向量,a1,a2,...,an是n个线性无关的n维向量,由Rn中任意n+1个向量必然线性相关,故X,a1,a2,...,an线性相关,即存在不全为零的数b,k1,k2,...,kn,使得
bX+k1a1+k2a2+...knan=0,
b不为零,否则k1a1+k2a2+...+knan=0,与a1,a2,...,an是n个线性无关矛盾,故
X=(-k1a1-k2a2-...-knan/b,